ΕΠΙΣΤΡΟΦΗ
Υλοποίηση μέσω γλώσσας Wolfram στο WLJS Notebook .
Μερικές Διαφορικές Εξισώσεις
Εξίσωση Laplace ($\nabla^2 u=0$)
Πολικές συντεταγμένες
Clear["Global`*"]
PDE = Laplacian[u[φ, ρ], {ρ, φ}, "Polar"] // Expand
r = 5;
f[φ_] := Cos[φ] + (Sin[φ])^2 + (Cos[φ])^3
u[φ_, ρ_] := R[ρ]*Φ[φ]
(ρ^2 PDE[[1]])/( R[ρ]*Φ[φ]) // Expand
eqR = ρ Derivative[1][R][ρ] + ρ^2 R''[ρ] == λ*R[ρ]
eqΦ = Φ''[φ] == -λ*Φ[φ]
Assuming[λ < 0, DSolve[eqΦ, Φ, φ]]
Assuming[λ == 0, DSolve[eqΦ, Φ, φ]]
Assuming[λ > 0, DSolve[eqΦ, Φ, φ]]
λ = n^2;
eqΦ
DSolve[eqΦ, Φ[φ], φ]
eqR
DSolve[eqR, R[ρ], ρ]
Clear[Φ]
Φ[φ_, n_] := a[n]*Cos[n φ] + b[n]*Sin[n φ]
C[1] Cosh[n Log[ρ]] + I C[2] Sinh[n Log[ρ]] // TrigToExp
Clear[R]
R[ρ_, s_] := ρ^s
uSeries[φ_, ρ_, n_] := Sum[R[ρ, j]*Φ[φ, j], {j, 0, n}]
uSeries[φ, ρ, 4]
a[0] = Integrate[f[φ], {φ, 0, 2 Pi}]/Integrate[1, {φ, 0, 2 Pi}]
b[0] = 0;
a[n_] := Integrate[f[φ]*Cos[n*φ], {φ, 0, 2 Pi}]/
Integrate[r^n (Cos[n*φ])^2, {φ, 0, 2 Pi}]
b[n_] := Integrate[f[φ]*Sin[n*φ], {φ, 0, 2 Pi}]/
Integrate[r^n (Sin[n*φ])^2, {φ, 0, 2 Pi}]
TableForm[Table[{n, a[n], b[n]}, {n, 0, 10}],
TableHeadings -> {None, {"n", "a[n]","b[n]"}}]
TrigReduce[f[φ]]
Clear[u]
u[φ_, ρ_] := Evaluate[uSeries[φ, ρ, 3]]
u[φ, ρ]
ParametricPlot3D[{ρ Cos[φ], ρ Sin[φ], u[φ, ρ]}, {ρ, 0, r}, {φ, 0, 2 Pi}]
Static web notebook
Author kkoud
Created Thu 11 Sep 2025 11:06:10
Κώστας Κούδας | © 2025